
Modeling the Web and the Computation of PageRank
Kristen Thorson

April 15, 2004

1

Table of Contents

1) Introduction 3
2) The Hyperlink Structure of the Web 5
3) Markov Chain Model of the Random Surfer 7
4) Modelling the Human Surfer 10
5) Computation and the Power Method 11
6) PageRank Implementation 16
7) PageRank Example 17
8) Strengths and Weaknesses of PageRank 18
9) PageRank Convergence and the Adaptive PageRank Algorithm 21
10) Filter-Based and Modified Adaptive PageRank 23
11) Implementation Issues 25
12) Adaptive PageRank Example 26
13) Conclusion 28
14) Appendices 29
15) References 42

2

1 Introduction

Information retrieval on the web is much more challenging than traditional

information retrieval (IR) systems. The web has a highly volatile structure: every day

pages are added, deleted, and modified. The size of the web is on the order of more than

a billion pages, and many of those pages contain redundant or incorrect information. A

search tool on the web must be able to distinguish high-quality pages from low-quality

pages. In addition, users of web search tools also present a challenge to IR researchers

and developers. The average web IR user enters very short queries, does not make use of

system feedback to revise the query, seldom performs a search using advanced search

options, and generally views only the top 10-20 documents returned by the search [5].

A simple textual search of a large set of web pages will most often return skewed

results. The underlying commercial structure of the web and the nature of the average

web surfer encourages the spamming of web search engines (artificially increasing the

likelihood a certain page will be returned by a query search) [2]. Ideally, a search engine

should be immune to spamming and pages should be ranked by query relevance.

Determining a page’s relevance to query terms is a complex problem for an IR system, but

the inherent hyperlink structure of the web may be used to generate an approximation of

relevancy. This idea is implemented in the PageRank algorithm, first devised by Sergey

Brin and Larry Page at Stanford University in 1997, and implemented by Google, a highly

successful web search engine.

In the case of Google and PageRank, performing a user search requires two

general steps:

1. perform text query: group and locally rank pages according to

traditional IR methods and

2. merge these results with the global PageRank scores to order the

documents returned by the search [2].

Traditional IR methods involve a textual search of the pages in the web where query terms

3

are matched to the documents and a relevancy set is created. The relevancy set is the

group of pages most closely related to the query terms. One stalwart of traditional IR

methods is Latent Semantic Indexing (LSI), a mathematical algorithm able to define

semantic associations between words [5]. A Google query also utilizes page formatting

information to create the relevancy set. Factors such as position on the page, font, size,

and capitalization influence rank within the relevancy set.

Brin and Page note that web documents are notoriously poor at self-description.

Many sites only contain a company or site name in the title. Brin and Page stress that

anchor text should be associated both with the originating page and the linked page,

because links often provide more complete and concise information about documents than

text contained in the actual document. This method also allows Google to perform

searches on documents that cannot be indexed by a text-based search engine, like images,

programs, and databases [2].

Once a relevancy set is created containing documents relevant to the query terms,

the Google system merges relevancy set rankings with PageRank scores and displays the

results. The PageRank values are pre-calculated and stored for all pages known to the IR

system. This means every page in the web has a PageRank score that is completely

independent of query terms. A search that returns PageRank scores is reporting the

importance hierarchy of pages containing the query terms.

Other popular web IR systems include HITS, which creates two rankings, a hub

score and an authority score, and SALSA, which attempts to utilize the strengths of both

PageRank and HITS. The focus of this paper is on PageRank, an algorithm introduced in

1998 by Brin and Page. Much research has been devoted to improving the computation of

PageRank while maintaining the same basic mathematical model. In this paper, we also

consider the adaptive algorithms introduced by Kamvar et al. in [3]. Finally, we present

the results of small-scale (compared to the size of the web) experiments on the PageRank

and adaptive PageRank algorithms running Matlab 6.0 R12 student version on an AMD

4

Athlon 64 3200+ 2GHz processor with 1 GB RAM.

2 The Hyperlink Structure of the Web

A set of pages in the web may be modeled as nodes in a directed graph. The edges

between nodes represent links between pages. A graph of a simple 6-page web is depicted

in Figure 1 below. The directed edge from node two to node three signifies that page two

links to page three. However, page three does not link to page two, so there is no edge

from node three to node two.

The PageRank thesis constructs page importance hierarchies based upon the link

structure of the web. An inlink from a page may be seen as a recommendation by the

author. Generally, more important pages will have more inlinks. Inlinks from important

pages will also have a greater effect on PageRank for a particular page than inlinks from

marginal pages. The calculation of PageRank is recursive, building the rank for a

particular page based on the ranks of the pages that link to it.

To calculate PageRank, we must begin by building a mathematical model of the

link structure of the web. We can construct an adjacency matrix L from the graph of the

web where

5

Figure 1: Graph modeling 6-node web

Lij={1, if there exists an edge from node i to node j ,
0, otherwise .

All entries of L are then either 0 or 1. An entry of 1 in the second row, third column

would indicate that page two links to page three. For the 6-node graph in Figure 1, the

adjacency matrix L is

The matrix L is used directly in computation by HITS, which was developed

during the same period as PageRank [4]. The HITS thesis constructs page ranking based

on number of inlinks and outlinks, while the PageRank thesis constructs page ranking

based on the importance of inlinks and outlinks. The underlying assumption in the

PageRank thesis is that a web user is more likely to visit more important pages.

Consider a theoretical web user, navigating through a series of web pages. As the

user views a page, he or she may follow any one of the page's outlinks to another page in

the web. Each row, i, of the matrix L represents the outlinks from the corresponding

page. The row may be reconstructed as a probability distribution for the movement of the

web user, so that each entry in a row instead signifies the conditional probability that a

user currently visiting page i would next visit page j.

Consider row one from the adjacency matrix L above. The matrix reveals that

page one has two outlinks to pages two and four. Assuming that a web user is equally

likely to follow all outlinks on any given page, we can then construct a new matrix P

where Pij is the probability of moving from node i to node j. Constructing P from L, we

get the following matrix:

6

L=[0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 1 0 0

].

The accuracy of the PageRank score for the web may be improved by analyzing

web usage logs to determine whether the probability of moving from node i to node j is

the same for each outlink. For example, if usage logs show that a user is more likely to

follow a link from page one to page two than from page one to page four, the first row of

P may be

For simplicity, we will assume throughout this paper that a user is equally likely to move

from node i to each outlinked node, so the formal method for filling in the entries of P is

where |Oi | is the cardinality of Oi, the set of outlinked nodes from node i. The

construction of the transition probability matrix P from the network graph in this manner

is the first step towards the mathematical model defining PageRank.

3 Markov Chain Model of the Random Surfer

We may assign PageRank to pages based on the information given in the matrix P.

Suppose a “random surfer” navigates through a series of pages, successively following

links at random. The PageRank of a particular page may be defined as the long-term

probability that the surfer will end up at that page, regardless of starting position [7].

Equivalently, if millions of users are surfing the web simultaneously, a page's PageRank is

the percentage of viewers expected to be on that page at any given time. We recognize

this probability vector as the stationary vector for a Markov Chain.

7

P=[0 .5 0 .5 0 0
.5 0 .5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 1 0 0

].

P 1=[0 .6667 0 .3333 0 0].

P ij={ 1
∣Oi∣

, if there exists an edge from node i to node j ,

0, otherwise ,

Consider the following vector:

The vector m could be a probability distribution for a set of four pages indicating that a

user is 60% likely to visit page two, 20% likely to visit pages three and four, and not likely

to visit page one at all from the current location. The vector m is called a discrete

probability vector if all entries are nonnegative and the column sum is 1 or

A stochastic matrix P is a non-negative matrix composed entirely of probability

vectors so that P e=e (where e is a vector of all ones) and P≥0 (Pij≥0 for all i, j). The

condition P e=e states that the sum of each row is equal to 1. A Markov Chain is then

defined as a sequence of probability vectors m0, m1, m2, m3, such that

and

An entry of the state vector mk describes the probability that a user is visiting a

particular page at time step k. Under certain assumptions, subsequent iterations of

mk1
T =mk

T P will converge to a stationary vector q, independent of m0 , such that

The stationary vector q may be interpreted as the long-term probability distribution for the

pages in the web [6]. Suppose an initial state vector for a set of four web pages is

and eventually converges to

8

m=[0
.60
.20
.20].

|| m ||1=∑mi=1.

m1
T=m0

T P , m2
T=m1

T P , m3
T=m2

T P ,

mk1
T =mk

T P , for k=0,1, 2,

qT P=qT.

m0=[0
.60
.20
.20]

Initially, a user is 60% likely to be at page two. The vector q reports that a user is

50% likely to be visiting page two at some distant future time independent of the current

location. The vector q could also be interpreted as “at any given time, half of all surfers

are visiting page two.”

The PageRank thesis posits that a page is important if other important pages link

to it. The importance zi of a page is calculated as

Thus, the PageRank of page i is the sum of the PageRanks of the pages that link to page i,

multiplied by the respective transition probabilities of P. If a particular page that links to

page i has a high PageRank, this will affect zi more than an inlinking page with low

PageRank. The PageRanks of a web of n pages are given by

In matrix terms, this may be written as z=PT z or zT=zT P . Recognize that z is a left-

hand eigenvector of P corresponding to =1 [5]. Thus computing PageRank, the

stationary vector of a Markov Chain, is computationally equivalent to finding the

eigenvector associated with a known eigenvalue, =1 .

 A Markov Chain is irreducible if every state is reachable from every other state.

If P is positive (P0 if P ij0 for all i, j), then each state is reachable from every other

state. Since all entries are greater than zero, given any initial state, any other state may be

reached in only one step. Thus, if P is positive, it is also irreducible. An irreducible,

9

q=[.10
.50
.15
.25].

zi=∑
j

P ji z j .

z1=P11 z1P21 z2P31 z3⋯Pn1 zn

z2=P12 z1P22 z2P32 z3⋯Pn2 zn

z3=P13 z1P23 z2P33 z3⋯Pn3 zn

⋮
zn=P1n z1P2 n z2P3n z3⋯Pnn zn .

stochastic matrix P is guaranteed to have a stationary vector by the Perron-Frobenius

Theorem:

If a square matrix A is positive, stochastic, and
irreducible, then it has a simple eigenvalue equal to
1, with a corresponding positive eigenvector. All
other eigenvalues are smaller in modulus.

The dominant eigenvalue of A is labeled 1=1 , while all other eigenvalues are given the

notations 2,3,4,n [8]. This theorem guarantees that a unique PageRank vector

exists, provided that P meets the necessary hypotheses. Furthermore, we may take

advantage of any computational algorithm designed to find the eigenvector associated

with a known eigenvalue.

4 Modeling the Human Surfer

As it stands, our Markov matrix P does not satisfy P > 0, and may not be

irreducible or stochastic. Fortunately, these mathematical technicalities coincide with web

modelling issues.

The random surfer model does not closely model the movement of a human surfer,

in that a human user always has the option of randomly jumping to another page in the

web. Should a user come to a page with no outlinks (such is the case with page five in

our 6-node web), he or she will presumably not remain on that page forever. At this

point, to continue surfing, the user is forced to jump to another page in the web. This

ability is always present however, since at any point in time the user may manually enter a

URL. Therefore, every page in the web is implicitly linked to one another through the

ability of the user to randomly jump to another page.

Since the human user will presumably not remain on a page with no outlinks

indefinitely, we must adjust P accordingly. We assume that the user is equally likely to

jump to any other page in the web. For a matrix P, construct P by replacing the entries in

10

a row of zeros with 1
n

eT , if such a row exists, where n is the order of P. Fortunately, this

also makes P stochastic, since every row of P is a probability vector.

Brin and Page add an adjustment matrix E to P , which directly links every page in

the web. The adjustment matrix E is constructed as 1
n

e eT , where n is the order of P. Even

though the user always has the option of jumping to any other page in the web, he or she

will not always choose to do so. Therefore, we must introduce another factor,  .

Google reportedly uses an α = .85, which indicates that the model used by Google

assumes that approximately 85% of the time, a user will simply follow successive links on

pages in the web. However, 15% of the time, the user will choose instead to jump to

another page in the web. Thus, we construct our new matrix A as

The introduction of E also serves to make A irreducible, since A is now positive.

Recall from the Perron-Frobenius theorem that a positive, stochastic, irreducible matrix is

guaranteed to have a positive eigenvector. We can formally construct A from P as

where α is the probability the user will choose to follow a link on the page, and (1 – α) is

the probability that the user will opt to jump randomly to another page in the web. Note

that the original P has been transposed to conform with usual convention of finding right,

instead of left, eigenvectors.

5 Computation and the Power Method

Finding the eigenvector for a given eigenvalue and matrix can be a complex

computation. There are several available methods for eigenvector calculation; the power

method is often the method of choice, due to issues of storage, computation time, and

complexity [5]. The power method is an iterative method that finds the vector xk1 from

11

A= PT1−E .

A= PT
1−

n
e eT ,

xk as xk1=A xk until xk1 converges within a desired tolerance. When xk1 converges,

that vector is the eigenvector for the given matrix and dominant eigenvalue (which in this

case is 1). The PageRank algorithm is an application of the power method:

function PageRank(A, z0)
repeat

zk1=A zk ;
=∣∣zk1−zk∣∣1 ;

until  ;
return zk1 ;

where  is the change from the kth iteration to the k+1th iteration and  is the desired

convergence threshold. Notice that the power method requires repeated matrix-vector

products, which can be implemented efficiently using specialized algorithms designed for

compressed matrices.

The irreducibility of A implies that λ1(A) = 1. In addition, we can show that

λ2 (A)≤α1 and that choosing an α farther from 1 will speed convergence of the power

method.

Theorem: The power method on A converges at a geometric rate of ∣2∣ .

Proof: Assume A has eigenvalues { λ1 = 1, λ2, λ3, ..., λn} ordered by magnitude

and | λk | < 1 if k≠1 . Assume there is a full basis of eigenvectors given by Avk = λk vk. .

Since any vector may be expressed as a linear combination of eigenvectors, given a

starting vector x0,

for some constants θk. Successive iterations of the power method give:

12

x0=∑
k=1

n

k vk ,

Since |λk | < 1 for k > 1,

and

The power method eventually converges to a multiple of the desired eigenvector

v1. If λ2 is the second largest eigenvalue, then the rate of convergence depends upon how

fast 2
j converges to zero.

13

x1 = A x0 = A∑k=1

n

k vk
= ∑

k=1

n

k A vk

= ∑
k=1

n

kk vk

x2 = A x1 = A x1=A∑k=1

n

kk vk
= ∑

k=1

n

kk A vk

= ∑
k=1

n

kk
2 vk

x3 = A x2 = A∑k=1

n

kk
2 vk

= ∑
k=1

n

kk
2 A vk

= ∑
k=1

n

kk
2 A vk

= ∑
k=1

n

kk
3 vk

⋮

x j = A j x0 = ∑
k=1

n

kk
j vk

= 1 v1∑
k=2

n

kk
j vk

.

lim
j∞
k

j=0

x j1 v1 .

The value of α affects the size of ∣2∣ , and hence, how fast the power method

converges. Suppose the stochastic matrix P has eigenvalues  (P)={1,2 ,3 , ,n }

arranged in decreasing size so that 1≥2≥3≥≥n . To force irreducibility and model

the movements of a human surfer who may make non-link jumps to other pages in the

web, the PageRank thesis constructs the matrix A such that

Theorem: The eigenvalues of A are then given by  (A)={1,2 ,3 , ,n } .

Proof: (Based on the proof by Langville and Meyer in [4]) Suppose ( , x) is an

eigenpair of A. Then, A x= x , which can be expressed as (A− I) x=0 . This implies

that (A− I) is singular, and therefore det (A− I)=0 . We will compute this

determinant and express it as a polynomial in  , whose roots are the eigenvalues of A.

Note that P e=e since P is stochastic. So,

At this point, let B=I
1−
−n

e eT and recall that the determinant is the product

14

A= P T
1−

n
e eT .

detA− I  = det P1−
n

e eT− I
= det P− I(−)

1−
(−) n

e eT
= det P− I

1−
(−) n

e eT−
1−

(−) n
e eT

= det P− I
1−

(−) n
P e eT−

1−
(−) n

e eT.

detA− I  = det P− I I 1−
(−) n

e eT
= det P− I detI 1−

(−) n
e eT.

of the eigenvalues:

 Fortunately, the eigenvalues of B are easily recognized. First note that

describes one eigenpair,1−− , e . Any w⊥e is also an eigenvector with =1 ,

because B w=w . Therefore, all other eigenvalues are 1 and

Returning now to the original expression:

The roots of this polynomial are

The primary importance of this result is that the power method applied to A will

converge at a rate given by

Since, ∣2∣≤ and the rate of convergence of the power method depends on the

size of the second largest eigenvalue, the choice of  will determine the rate of

convergence of the power method. A change in  will greatly reduce the total number of

15

det (B)=∏ (B) .

B e=1 1−
−e= 1−

−
e

 (B)={1−− ,1,1, ,1} ⇒ det (B)=
1−
−

.

 (A)={1,2,3, ,n}.

∣2 (A)
1 (A)∣≤∣1∣= .

detA− I  = det P− I det B

= det P− I 1−−
= −2−3−n−1−−
= 1−2−3−n−.

iterations needed to perform the PageRank algorithm, and may also drastically affect the

PageRanks of pages in the web. A higher value of  will place more weight on the link

structure of the web, but will cost more in terms of computation time.

We ran the power method using various values of  on a 6012 x 6012 matrix

modelling the hollins.edu web with a convergence tolerance of 10e-8. Running the code

of Appendix A in Matlab 6.0 R12 student version produces the following results:

 Iterations

.99 1283

.95 255

.85 84

.75 49
.5 22

Table 1: Effect of  on number of iterations

Note that a change in  will have serious effects on the number of iterations needed for the

power method to converge to the desired tolerance (see Appendix C for graphs). In fact,

geometric convergence allows us to estimate the number of iterations by
−6
log .

Performing PageRank calculations on the hollins.edu domain produces differing

PageRanks according to the value of  (See Appendix B).

6 PageRank Implementation

It is important to note that the implementation of PageRank in an IR system

requires several steps. At the outset, query terms must be matched to pages in the web

and a relevancy set created. The relevancy set is then sorted by PageRank values. In

most cases, PageRank seems to serve as a good approximation for query relevance, and

advanced methods of text searching can improve the search quality of the IR system. For

example, Google assigns weights to terms in pages in the web. Words in comparatively

16

large or bold font (such as article titles) are weighted higher. Outside information known

as meta data includes information about the reputation of the source, frequency of

updates, and usage statistics. The text of an outgoing link is associated both with the

linking page and the linked page since the text of an inlink often provides more accurate

information about page content than the page itself [2]. The implementation of query

parsing and text searching is beyond the scope of this paper, but plays a very important

role in the accuracy of Google’s answer to a query.

The resulting PageRank values for the web are greatly affected by the choice of α

and by the chosen convergence tolerance. Google reportedly uses a value of α = .85, but

the convergence test is proprietary information. In 1998, Brin and Page claimed that a

web of approximately 322 million pages converged in about 52 iterations and a web half

that size converged in about 45 iterations. Our experiments indicate that the number of

iterations required to reach convergence depends primarily on the hyperlink structure of

the web, rather than its size (see Appendix E).

7 PageRank Example

Consider the small 6-node web from Figure 1. Recall that the transition probability

matrix P for this graph was

Note that row five does not have any outlinks, creating a row of zeros. Every

entry in P must be replaced with 1
n eT. This yields the matrix P as

17

P=[0 .5 0 .5 0 0
.5 0 .5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 1 0 0

].

Recall that P is now stochastic but may not be irreducible. With =.85 , the adjusted

matrix A is constructed from P as

After 24 iterations and a tolerance of 10e-8, the PageRank scores for this web converge to

 These PageRank scores rank pages four and five highest, meaning they have the greatest

importance. Note that page five has no outlinks, and only one inlink. Since page four has

three inlinks, it has a high PageRank. Page five gets a high PageRank due to the one

inlink from page four. The single inlink from an important page makes page four the most

important page, even though other pages in the web have more inlinks. This is exactly the

desired effect of the PageRank algorithm.

Appendix D displays the PageRank vector at each iteration. Note that some pages

in the web seem to converge to the final PageRank values quickly, while other pages take

many more iterations before they begin to approach their final PageRank values.

8 Strengths and Weaknesses of PageRank

One of PageRank's strengths is query independence, since PageRank is calculated

for all pages in the web, independent of any query. However, this facet may also be

18

P=[0 .5 0 .5 0 0
.5 0 .5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

.1667 .1667 .1667 .1667 .1667 .1667
0 0 0 1 0 0

].
A=[.025 .45 .025 .025 .1667 .025

.45 .025 .025 .025 .1667 .025
.025 .45 .025 .025 .1667 .025
.45 .025 .875 .025 .1667 .875

.025 .025 .025 .875 .1667 .025

.025 .025 .025 .025 .1667 .025
].

zT=[.1179706 .1179706 .1179706 .2759037 .3023513 .0678331].

considered a weakness due to the volatile nature and vast size of the web. The web

contains so many documents that performing PageRank calculations must be done

utilizing distributed methods of computing, so that portions of the calculations are

completed on separate computers. Prior to calculating PageRank for the known web, a

web crawl must be done to build the transition probability matrix. Both of these tasks are

extremely time-consuming, taking several days even on state-of-the art distributed

computing clusters. For this reason, Google recomputes PageRank only once every

month. For less volatile mediums, calculating PageRank once a month may produce

reasonably accurate results, but the structure and content of the web changes daily,

sometimes in very drastic ways. Much of the research surrounding the PageRank

algorithm today focuses on the issue of updating the PageRank vector, so that it may be

updated more frequently (and thus a more accurate representation of the current web) at a

lower computational cost.

PageRank is a recursive calculation by nature: the PageRank for page i depends on

the PageRanks of all pages that link to page i. In general, a page will receive a high

PageRank due to the high PageRank of an inlinking page. However, a sufficient number

of links from pages with low PageRank can produce the same effect as one inlink from a

page with high PageRank. Intentionally setting up such a scenario would be considered

spamming the search engine.

Though the PageRank algorithm is notoriously tough to spam, it is not impervious.

Link farms are networks of pages that all link to one another, and link to a separate page.

The PageRanks of the network of pages may then sum to the equivalent of an inlink from

one page with a high PageRank. An unintentional example of a link farm may be seen in

the Appendix B results of the hollins.edu domain. The ten highest ranking results for

=.85 are:

19

Order PageRank Page
 1 0.01987875 http://www.hollins.edu/
 2 0.00928762 http://www.hollins.edu/admissions/visit/visit.htm
 3 0.00861039 http://www.hollins.edu/about/about_tour.htm
 4 0.00806503 http://www.hollins.edu/htdig/index.html
 5 0.00802657 http://www.hollins.edu/admissions/info-request/info-request.cfm
 6 0.00716464 http://www.hollins.edu/admissions/apply/apply.htm
 7 0.00658278 http://www.hollins.edu/academics/library/resources/web_linx.htm
 8 0.00598921 http://www.hollins.edu/admissions/admissions.htm
 9 0.00557174 http://www.hollins.edu/academics/academics.htm
10 0.00445247 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld001.htm

Page ten in the above rankings is the introduction page of a slideshow on Greek

sculpture. The page's high PageRank is due to the fact that all subsequent slides link to the

previous and next slides, as well as the introduction slide. Our hypothetical web surfer

randomly clicking links would get “stuck” in the slide show, since there are no escape

links to the rest of the web. Introducing E, parameterized by 1− , moderates the

importance of the link structure in the calculation of PageRank. When a high value, say

=.99 , is used (see Appendix B), the slide show introduction rises to first in PageRank.

Langville and Meyer report that Google uses an alternative construction of the

matrix A in order to strengthen PageRank's defense against this form of spamming [4].

The “personalization vector” v is a non-uniform vector used in replacement of e in the

construction of the adjustment matrix E. In 1998, Brin and Page introduced the idea of

personalized PageRank based on a nonuniform distribution for E [7]. This version of the

adjustment matrix was intended to be personalized for individuals or groups. For

example, a user who surfs the web primarily for news articles may find the results of a

query more helpful if the PageRanks are biased towards news sites. The idea of

personalized PageRank proved to be very costly in implementation, since multiple

PageRank vectors would need to be calculated for the entire web. However, this

alternative to a uniform distribution of E has allowed Google to bias PageRank against

link farms.

20

9 PageRank Convergence and the Adaptive PageRank Algorithm

Many researchers are interested in reducing the prohibitive computational cost and

time of calculating PageRank, so that it may be computed more frequently and thus more

accurately reflect the current web. Kamvar, Haveliwala, and Golub note that different

pages in the web converge to their respective PageRanks at differing rates. In particular,

those pages with lower PageRanks tend to converge very quickly, while pages with higher

PageRanks tend to take more iterations to converge [3].

In January, 2001, Kamvar et al. measured the rates of convergence to final

PageRank for the approximately 80 million nodes in the stanford.edu web. They note that

most pages converge to final PageRank in 15 or fewer iterations of the power method (see

Table 2).

Number of Pages Average PageRank
t i≤15 227597 2.6642e-06

t i15 54306 7.2487e-06

Total 281903 3.5473e-06

Table 2: Effect of PageRank on number of iterations to converge in the stanford.edu web

That most pages converge to their final PageRank in few iterations suggests much

computational time may be saved by eliminating the calculation of subsequent iterations

for those nodes. Using Algorithm 1, we generate zk1 from zk as zk1=A zk . At any

given step, this algorithm may involve redundant computations for pages that have already

converged.

We can begin to eliminate the redundant computations by monitoring for nodes

that appear to have converged. Let C be the set of n - m pages that have converged for

the iteration zk , and let N be the set of m pages that have not converged. We may reorder

the current iteration of the PageRank vector as

21

The matrix A may also be split into two submatrices. Let AN be the m x n

submatrix corresponding to the nodes that have not converged, and AC the (n – m) x n

submatrix corresponding to those nodes that have converged [3]. The next iteration of

the power method in this case would be

The subvector zC
k is the vector of nodes that have already converged, so the next iteration

of this subvector, zC
k1 , need not be calculated [3]. The next iteration of the algorithm

may be simplified to

Thus, the PageRanks for those pages already converged to within the given tolerance are

not recomputed. Given a large enough matrix, the time saved by eliminating the

recalculation of the pages with converged PageRanks will outweigh the overhead involved

with maintaining the sets C and N. Kamvar et al. [3] give the formal algorithm for

Adaptive PageRank as:

function AdaptivePageRank(A, z0)

repeat
zN

k1=AN zk ;
zC

k1=zC
k ;

[N, C] = detectConverged(zk , zk1 ,);
periodically, =∣∣A zk−zk∣∣1 ;

until  ;
return zk1 .

Note that the submatrix AC is not actually used in the new computation. To reorder the

matrix A or completely construct the submatrix AN would be very costly in terms of

22

zk=[zN
k

zC
k].

[zN
k1

zC
k1]=[AN

AC][zN
k

zC
k].

zN
k1 = AN zk

zC
k1 = zC

k .

computation time.

Though the matrix A has not become smaller in dimension, the matrix needed for

the computation of the next iteration is more sparse than the original matrix A. Sparse

matrices are matrices with many zero entries, and thus storage requirements and

computation time may be reduced by storing only the nonzero entries and their locations.

Since each nonzero in the matrix corresponds to a link, and most pages have very few

links relative to the enormous size of the web, we expect any matrix generated from a web

graph to be extremely sparse. See, for example, the sparsity plot of the hollins.edu web in

Appendix F.

10 Filter-Based and Modified Adaptive PageRank

Kamvar et al. also introduce a Filter-Based Adaptive method and a Modified

Adaptive method both based on the Adaptive PageRank algorithm [3]. The filter based

Adaptive method completely reforms the matrix A as

so that all entries of of the submatrix AC are changed to zero. This makes A' even more

sparse than A, which greatly decreases computation time, since non-zero entries slow

matrix multiplication. The cost of matrix multiplication is more directly given by the

nonzero entries of the matrix, rather than the dimensions of the matrix [3]. However,

creating this new matrix A' is very costly (about the same cost as one full power iteration),

so it should not be done too often. Kamvar et al. formally define the matrix A' as

This constructs A' as a sparse matrix with non-zero entries corresponding only to

nonconverged nodes. The PageRanks of the converged nodes are constructed as

23

A '=[AN

0],

Aij '={0 if i C ,
Aij otherwise .

z ' i
k={zi

k if i C ,
0 otherwise .

Each iteration of the Filter-Based Adaptive PageRank multiplies the matrix A' by the

previous iteration's PageRank vector. Since the converged nodes have been “zeroed out”

of A', the PageRanks of those nodes must be added to the PageRanks of the nonconverged

nodes for the current iteration. The Filter-Based Adaptive PageRank algorithm [3] is:

function filterAPR(A, z0)
repeat

zN
k1=A' zkz ' ;

periodically,
[N, C] = detectConverged(zk , zk1 ,);
A ' =filter(A ' , N, C);
z ' =filter(zk , C);

periodically, =∣∣A zk−zk∣∣1 ;
until  ;
return zk1 ;

Even though the dimensions of A' are the same as those of A, the cost of performing

matrix multiplication is lower, since A' is much more sparse. The goal of the Filter-Based

Adaptive PageRank algorithm is to periodically increase the sparsity of A to lower the

average computation cost of each iteration [3].

The Modified Adaptive PageRank algorithm is more refined than the first two

algorithms, but it also requires the most overhead, which can slow computation time.

Kamvar et al. further reduce redundant computation of PageRank by eliminating the

recomputation of the pages in N due to inlinks from C. The matrix A is then reordered as

where ANN are the entries corresponding to links within pages that have not converged to

the desired tolerance. Similarly, ANC are the entries corresponding to links from pages

that have converged to pages that have not converged, and so on [3]. Since the PageRank

of a given page is the sum of the PageRanks of inlinking pages, we need only perform

calculations on nonconverged pages that have inlinks. Thus, we need only calculate

PageRank for the matrices ANN and ANC . The algorithm for the Modified Adaptive

PageRank [3] is given as

24

A=[ANN ANC

ACN ACC],

function modifiedAPR(A, z0)
repeat

zN
k1=ANN zN

k  y ;
zC

k1=zC
k ;

periodically,
[N, C] = detectConverged(zk , zk1 ,);
y=ANC zC

k ;
periodically, =∣∣A zk−zk∣∣1 ;

until  ;
return zk1 ;

It is not necessary to explicitly reorder the entire matrix to form the submatrices ANN ,

ACN , ANC , and ACC . Kamvar et al. lastly introduce a Filter-Based Modified Adaptive

PageRank algorithm that combines the two methods.

11 Implementation Issues

The implementation of Adaptive PageRank using a high-level language such as

Matlab is somewhat limited by the performance of included functions. An optimal

implementation of both the PageRank and Adaptive PageRank algorithms would require a

low-level language such as C++, which as a compiled language is more efficient than code

written for Matlab. Code written and run using Matlab must be interpreted at runtime,

meaning the computer must read each line, and execute the code accordingly, with little or

no chance to optimize for efficiency. Compiled code is optimized and converted by a

compiler into code for interpretation. The efficiency of code written for Matlab is reliant

upon the efficiency of the internal functions included with the Matlab installation. For

example, to compute the one-norm of a vector, the Matlab sum(abs(x)) command is

mysteriously many times more efficient than the mathematically equivalent norm(x,1)

function. Calculations involving submatrices in the adaptive algorithm require special

25

consideration. Column based submatrices are more efficiently extracted than square or

row based submatrices due to sparse matrix storage design issues.

For Brin and Page's PageRank algorithm, the adjustment matrix E is added to the

stochastic matrix P . If implemented in this way, we must then perform matrix

multiplication on a completely full matrix. Since all entries of E are assumed to be

uniform, it is highly inefficient to destroy the sparsity of P in this manner. Thus, matrix

multiplications are performed on the sparse matrix P, but multiplication by E may be done

implicitly. Similarly, zero rows in P may be adjusted implicitly in the matrix-vector

multiplication routine, again with the aim of preserving sparsity.

Kamvar et al. note that even using a filtering-based algorithm that does not

completely reorder A, the overhead associated with filtering out nonconverged nodes in A

can outweigh the time saved by performing calculations only on those nonconverged

nodes. Also, they note that some nodes seem to converge immediately, then change as

other related nodes converge to their final PageRank. Thus, they introduce phases of

“pruning.” Using this scheme, all nodes are included in the initial computations, and

converged nodes are filtered out until all nodes converge to the desired tolerance. The

tolerance level is lowered, and the adaptive method is run again on the entire matrix,

pruning out converged nodes at the current tolerance level. This technique is utilized in

the code we used to calculate the Adaptive PageRanks.

12 Adaptive PageRank Example

The adaptive PageRank algorithm produces the same PageRank vector results as

the PageRank example of Section 7. The number of iterations required and the interim

PageRank vectors for each iteration are different for the adaptive method.

The power method and the adaptive method were both run on the hollins.edu web.

26

Appendix G is a graphical comparison of the convergence pattern of both algorithms.

Initially, the algorithms have a similar pattern, but the adaptive method takes more

iterations to converge to a tolerance of 10e-3. This is because the adaptive method

requires all nodes to converge to 10e-3 before lowering the tolerance threshold and

performing the algorithm on the entire matrix. Each successive pruning stage requires a

few more iterations, and the end result is that the adaptive method requires more iterations

to converge to the final tolerance of 10e-8. However, the general slope of the

convergence curve is not appreciably altered.

As discussed previously, the adaptive method introduces an extra layer of

overhead. For example, the sets C and N must be created for each phase and adjusted as

some nodes converge. Due to this extra overhead the adaptive method is much less

efficient than the power method for small webs. Using datasets contributed by Langville,

Kamvar, and Massey, we can compare the speed results of the PageRank versus the

Adaptive PageRank algorithms for various sized webs (see Appendix E).

The adaptive algorithm only begins to show improvement over the PageRank

algorithm for the two largest webs in the dataset. The experimental results show at best

an 11% improvement in computation time for a web of 685,230 pages. Kamvar et al.

report a 20% improvement for a web of approximately 80 million nodes using the

Modified Adaptive PageRank method. For small webs, the adaptive approach is generally

slower than the original PageRank algorithm, though experiments indicate that for larger

webs, some form of the adaptive method would result in a significant reduction in

computation time.

For every dataset in the experiment, the adaptive method required more iterations

than the PageRank algorithm. Kamvar et al. report similar results [3]. In general, the

adaptive method seems to require more iterations, but the average cost in computation

time for each iteration is lower for large webs. This is good news for an implementation

of the Adaptive PageRank method on the entire web, since the current web contains

27

billions of pages. Suppose the average computation time for PageRank using the original

power method is three days. A 20% improvement would save more than 14 hours of

computation time. In addition, experiments indicate that the time saved with the adaptive

method may increase significantly for a web of several billion pages, compared to a web of

only 80 million.

13 Conclusion

The core of the Google search engine is the PageRank algorithm, which defines

page importance hierarchies for all pages in the web. PageRank is used in conjunction

with many forms of advanced IR tools, and provides a fast, reasonable response to query

terms. The nature of the PageRank algorithm and the philosophy behind Google make the

search engine resistant to spamming.

The inherent link structure of the web lends itself to the construction of a Markov

model of the web and web users. By using known algorithms to calculate the eigenvector

of the transition probability matrix when =1 , we can find the stationary vector of this

Markov Chain. This stationary vector is the vector of PageRanks for all pages in the web.

Much research is devoted to many aspects of the Google search engine. Topics

include PageRank updating techniques, anti-spamming, personalization, and accelerating

convergence. For large scale webs, some form of the adaptive PageRank method shows a

definite improvement in computation time, though it generally requires more iterations.

The results show that for a web as large as the current web, the adaptive methods will

produce a lower average cost of computation per iteration, despite the extra overhead.

28

14 Appendex A: Matlab code for PageRank experiments

%%
%%
%% [U,P] = loaddat(fname,ftype)
%% loads .dat file formatted like
%% ftype = 1 : hollins.dat, mathworks.dat
%% = 2 : stanford.dat, stanberk.dat
%% = 3 : .dat files from Langville (linktiny10, linkjordan, etc)
%% returns sparse transition matrix with P(i,j) = prob(i ==> j)
%% U contains the urls when ftype = 1
%%
%%

function [U,P] = loaddat(fname,ftype)

tic;
f = fopen(fname,'r');
U = cell(0,0);

if (ftype == 1)
 n = fscanf(f,'%d',1);
 nlink = fscanf(f,'%d',1);

 U = cell(n,1);
 ij = zeros(nlink,2);

 for i=1:n
 a = fscanf(f,'%d',1);
 s = fscanf(f,'%s',1);
 U{i} = s;
 end

 for i=1:nlink
 ij(i,1) = fscanf(f,'%d',1);
 ij(i,2) = fscanf(f,'%d',1);
 end

 P = (sparse(ij(:,1),ij(:,2),1,n,n) ~= 0); %% 0-1 matrix
elseif (ftype == 2)
 P = spconvert(load(fname));
 n = max(size(P)); P(n,n) = 0; % make the matrix square
elseif (ftype == 3)
 j = fscanf(f,'%s',7);
 n = fscanf(f,'%i',1);
 j = fscanf(f,'%s',5);
 P = sparse(n,n);

 for i=1:n
 j = fscanf(f,'%s',7);
 j = fscanf(f,'%i',1);
 if j >= 1
 for m=1:j
 k = fscanf(f,'%i',1);
 P(i,k+1) = 1/j; % adjusts indexing to start at 1 instead of 0
 end
 end
 end
end

%% normalize

P = P'; % much faster if working with columns

for i=1:n
 k = sum(P(:,i));
 if (k ~= 0)
 P(:,i) = P(:,i) / k;
 end
end

%% record indices of zero rows (not returned)
zr = find(sum(P,1) == 0);

P = P'; % flip back so row sum is one

fprintf(1,'matrix size = %d, nnz = %d, zero cols = %d\n',n,nnz(P),length(zr));
fprintf(1,' took %f seconds\n',toc);

29

%%
%%
%% function [x,chistory] = powermethod(P,alpha,tol,mu)
%%
%% efficient power method to compute stationary vector
%% the operator is:
%% A = alpha * P' + (1-alpha)ve'
%% (personalization vector v=e/n is hard coded)
%% implicitly applies ve' and zero row corrections
%% applies shifts in mu
%% convergence history is the 1-norm difference of successive iterates
%%
%%

function [x,chistory] = powermethod(P,alpha,tol,mu)

tic;
n = size(P,1);
x = ones(n,1) / n;
nmu = length(mu);

iteration = 0;
while (1)
 iteration = iteration + 1;
 x0 = x;
 x = alpha * (x'*P)';
 x = x + (1-sum(x))/n;

 if (iteration <= nmu)
 x = x - mu(iteration)*x0;
 x = x/sum(x);
 end

 % tracking convergence is noticably time consuming
 % one norm suggested by golub, norm(,1) is inefficient
 change = sum(abs(x-x0));
 chistory(iteration) = change;
 if (change < tol)
 break;
 end
end

fprintf(1,'power method took %d iterations to converge to a tolerance of %e\n',iteration,tol);
fprintf(1,' elapsed time = %f\n',toc);

30

%%
%%
%% function [x,chistory] = adaptive(P,alpha,tol,mu,ipp,ppr,tl)
%%
%% best matlab implementation of Kamvar's adaptive method
%% (expect better results with specialized compiled code)
%% ipp iterations per phase, and ppr phases per restart
%% prunes converged links after every phase
%% lowers threshold every restart (up to tl threshold levels)
%% (ppr=1 then ordinary power method)
%% the operator is:
%% A = alpha * P' + (1-alpha)ve'
%% (personalization vector v=e/n is hard coded)
%% implicitly applies ve' and zero row corrections
%% applies shifts in mu
%% convergence history is 1-norm difference of successive full-matrix iterates
%%
%%

function [x,chistory] = adaptive(P,alpha,tol,mu,ipp,ppr,tl)

tic;
n = size(P,1);
x = ones(n,1) / n;
nmu = length(mu);

iteration = 0;
avgk = 0;
lt = -2; % log10(threshold)
dt = (log10(tol)-lt) / tl; % change in threshold each restart

while (1)
 if (mod(iteration,ipp*ppr) == 0) % restart
 lt = lt + dt;
 threshold = max(tol,10^lt);
 k = n; % number of non-converged
 elseif (mod(iteration,ipp) == 0) % new phase
 relch = abs((x-x0) ./ x0); % relative change
 C = find(relch < threshold);
 N = find(relch >= threshold);
 k = length(N);
 Pn = P(:,N); % extracting cols is most efficient
 sxn = sum(x(N));
 end

 if (mod(iteration,ipp) == 0)
 fprintf(1,'%12d %e\n',k,threshold);
 end

 iteration = iteration + 1;
 avgk = avgk + k;

 if (k==n) % do regular power iteration
 x0 = x;
 x = alpha * (x'*P)';
 x = x + (1-sum(x))/n;

 if (iteration <= nmu)
 x = x - mu(iteration)*x0;
 x = x/sum(x);
 end

 change = sum(abs(x-x0)); % one norm suggested by golub
 chistory(iteration) = change;
 if (change < tol)
 break;
 end
 else
 if (mod(iteration,ipp)==0) % store for pruning
 x0 = x;
 end
 xn = alpha * (x'*Pn)';
 % without knowing exactly which columns were zero to apply ve' implicitly,
 % we approximate that sum(x) should remain constant
 x(N) = xn + (sxn-sum(xn))/k;
 end
end

avgk = avgk / iteration;

31

fprintf(1,'adaptive method took %d iterations to converge to a tolerance of %e\n',iteration,tol);
fprintf(1,' average size of non-converged set is %.0f out of %.0f\n',avgk,n);
fprintf(1,' elapsed time = %f\n',toc);

%%%
%%
%% x = testpr(U,P,alpha,tol,nmu,ipp,ppr,tl)
%%
%% example (tested on stanberk.dat)
%% testpr(U,P,.85,1e-8,0,8,3,4) ==> 92 (17.5), 99 (16)
%% testpr(U,P,.85,1e-8,4,8,3,4) ==> 72 (13.8), 103 (16.2)
%%
%%%

function x = testpr(U,P,alpha,tol,nmu,ipp,ppr,tl)

% do some heuristic shifts to speed convergence
% pick some shifts in [-alpha,alpha], skewed toward the left (away from 1)
mu = zeros(0);
if (nmu > 1)
 mu = alpha*((2.^[0:nmu-1] - 1)*2/(2^(nmu-1)-1) - 1)
end

[x,ch] = powermethod(P,alpha,tol,mu);
[x1,ch1] = adaptive(P,alpha,tol,mu,ipp,ppr,tl);

semilogy(ch); hold on; semilogy(ch1); hold off;

disp(norm(x-x1,'inf'));
[x,ii] = sort(-x); x = -x; % descending order
if (length(U) > 0)
 U = U(ii);
end
for i=1:10
 if (length(U) > 0)
 fprintf(1,'%10.8f %s\n',x(i),char(U(i)));
 else
 fprintf(1,'%10.8f\n',x(i));
 end
end

32

Appendix B: PageRank Results

The Hollins link data was generated from a web crawl of the www.hollins.edu and
www1.hollins.edu domains on Jan 15, 2004.

=.85
Order PageRank Page
 1 0.01987875 http://www.hollins.edu/
 2 0.00928762 http://www.hollins.edu/admissions/visit/visit.htm
 3 0.00861039 http://www.hollins.edu/about/about_tour.htm
 4 0.00806503 http://www.hollins.edu/htdig/index.html
 5 0.00802657 http://www.hollins.edu/admissions/info-request/info-request.cfm
 6 0.00716464 http://www.hollins.edu/admissions/apply/apply.htm
 7 0.00658278 http://www.hollins.edu/academics/library/resources/web_linx.htm
 8 0.00598921 http://www.hollins.edu/admissions/admissions.htm
 9 0.00557174 http://www.hollins.edu/academics/academics.htm
10 0.00445247 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld001.htm
11 0.00438508 http://www.hollins.edu/grad/coedgrad.htm
12 0.00377793 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/tsld001.htm
13 0.00374159 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/index.htm
14 0.00352556 http://www.hollins.edu/alumnae/alumnae.htm
15 0.00339769 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/sld001.htm
16 0.00333746 http://www1.hollins.edu/classes/dance/website/home.htm
17 0.00333375 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld053.htm
18 0.00331817 http://www.hollins.edu/calendar
19 0.00322873 http://www.hollins.edu/calendar/index.html
20 0.00309215 http://www.hollins.edu/admissions/financial/finaid.htm
21 0.00291088 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/sld001.htm
22 0.00287267 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/tsld001.htm
23 0.00284728 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/index.htm
24 0.00280248 http://www.hollins.edu/calendar/null.htm
25 0.00267832 http://www.hollins.edu/cgi-bin/forumdisplay.cgi

=.95
Order PageRank Page
 1 0.01815080 http://www.hollins.edu/
 2 0.01039056 http://www.hollins.edu/admissions/visit/visit.htm
 3 0.00959949 http://www.hollins.edu/about/about_tour.htm
 4 0.00919491 http://www.hollins.edu/htdig/index.html
 5 0.00898837 http://www.hollins.edu/admissions/info-request/info-request.cfm
 6 0.00792486 http://www.hollins.edu/admissions/apply/apply.htm
 7 0.00774263 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld001.htm
 8 0.00702116 http://www.hollins.edu/admissions/admissions.htm
 9 0.00659465 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/index.htm
10 0.00605345 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/tsld001.htm
11 0.00602382 http://www.hollins.edu/academics/academics.htm
12 0.00584354 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld053.htm
13 0.00583822 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/sld001.htm
14 0.00545755 http://www.hollins.edu/academics/library/resources/web_linx.htm
15 0.00522115 http://www.hollins.edu/grad/coedgrad.htm
16 0.00495969 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/sld001.htm
17 0.00495163 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/index.htm
18 0.00455365 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/tsld001.htm
19 0.00452059 http://www1.hollins.edu/faculty/saloweyca/clas%20395/DAGEO/sld001.htm
20 0.00441467 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/sld040.htm
21 0.00419394 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/index.htm
22 0.00408164 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Acropolis/sld001.htm
23 0.00394010 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/tsld002.htm
24 0.00389185 http://www.hollins.edu/admissions/financial/finaid.htm
25 0.00386187 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/tsld001.htm

33

=.99
Order PageRank Page
 1 0.01304090 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld001.htm
 2 0.01120217 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/index.htm
 3 0.00991319 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld053.htm
 4 0.00982378 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/tsld001.htm
 5 0.00960742 http://www.hollins.edu/
 6 0.00941925 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/sld001.htm
 7 0.00805206 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/index.htm
 8 0.00777246 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/sld001.htm
 9 0.00716868 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/sld040.htm
10 0.00708249 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/tsld001.htm
11 0.00695790 http://www1.hollins.edu/faculty/saloweyca/clas%20395/DAGEO/sld001.htm
12 0.00678252 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/tsld002.htm
13 0.00662154 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/index.htm
14 0.00615101 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Acropolis/sld001.htm
15 0.00605808 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld002.htm
16 0.00604710 http://www.hollins.edu/admissions/visit/visit.htm
17 0.00592041 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/sld034.htm
18 0.00591465 http://www1.hollins.edu/faculty/saloweyca/clas%20395/DAGEO/index.htm
19 0.00583656 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/tsld001.htm
20 0.00558166 http://www.hollins.edu/about/about_tour.htm
21 0.00539421 http://www.hollins.edu/htdig/index.html
22 0.00535363 http://www1.hollins.edu/faculty/saloweyca/clas%20395/painting/sld001.htm
23 0.00530287 http://www1.hollins.edu/faculty/saloweyca/clas%20395/DAGEO/sld031.htm
24 0.00523053 http://www.hollins.edu/admissions/info-request/info-request.cfm
25 0.00522050 http://www1.hollins.edu/faculty/saloweyca/clas%20395/DAGEO/tsld001.htm

=.75
Order PageRank Page
 1 0.01831690 http://www.hollins.edu/
 2 0.00722917 http://www.hollins.edu/admissions/visit/visit.htm
 3 0.00673192 http://www.hollins.edu/about/about_tour.htm
 4 0.00624490 http://www.hollins.edu/admissions/info-request/info-request.cfm
 5 0.00621035 http://www.hollins.edu/academics/library/resources/web_linx.htm
 6 0.00617604 http://www.hollins.edu/htdig/index.html
 7 0.00565717 http://www.hollins.edu/admissions/apply/apply.htm
 8 0.00444695 http://www.hollins.edu/academics/academics.htm
 9 0.00443701 http://www.hollins.edu/admissions/admissions.htm
10 0.00321908 http://www.hollins.edu/grad/coedgrad.htm
11 0.00312996 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld001.htm
12 0.00290543 http://www1.hollins.edu/classes/dance/website/home.htm
13 0.00284957 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/tsld001.htm
14 0.00276598 http://www.hollins.edu/alumnae/alumnae.htm
15 0.00263547 http://www.hollins.edu/calendar/index.html
16 0.00262602 http://www.hollins.edu/cgi-bin/forumdisplay.cgi
17 0.00262042 http://www.hollins.edu/calendar
18 0.00262039 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/index.htm
19 0.00240315 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/sld001.htm
20 0.00235403 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld053.htm
21 0.00221787 http://www.hollins.edu/cgi-bin/Ultimate.cgi?action=intro&BypassCookie=true
22 0.00217753 http://www1.hollins.edu/faculty/saloweyca/clas%20395/BronzeAGe/tsld001.htm
23 0.00215283 http://www.hollins.edu/admissions/financial/finaid.htm
24 0.00213418 http://www.hollins.edu/undergrad/undergraduate.htm
25 0.00206775 http://www1.hollins.edu/faculty/saloweyca/clas%20395/kouroikorai/sld001.htm

34

=.5

Order PageRank Page
 1 0.01279958 http://www.hollins.edu/
 2 0.00436698 http://www.hollins.edu/academics/library/resources/web_linx.htm
 3 0.00365657 http://www.hollins.edu/admissions/visit/visit.htm
 4 0.00345085 http://www.hollins.edu/about/about_tour.htm
 5 0.00318433 http://www.hollins.edu/admissions/info-request/info-request.cfm
 6 0.00305074 http://www.hollins.edu/htdig/index.html
 7 0.00297057 http://www.hollins.edu/admissions/apply/apply.htm
 8 0.00234763 http://www.hollins.edu/academics/academics.htm
 9 0.00198186 http://www.hollins.edu/admissions/admissions.htm
10 0.00194693 http://www.hollins.edu/cgi-bin/forumdisplay.cgi
11 0.00187523 http://www1.hollins.edu/classes/dance/website/home.htm
12 0.00166158 http://www1.hollins.edu/Docs/Academics/international_programs/forms.htm
13 0.00156837 http://www.hollins.edu/cgi-bin/Ultimate.cgi?action=intro&BypassCookie=true
14 0.00156778 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/tsld001.htm
15 0.00153113 http://www.hollins.edu/calendar/index.html
16 0.00148812 http://www1.hollins.edu/faculty/saloweyca/clas%20395/Sculpture/sld001.htm
17 0.00143111 http://www1.hollins.edu/docs/alumdev/Default.htm
18 0.00142132 http://www.hollins.edu/grad/coedgrad.htm
19 0.00140839 http://www.hollins.edu/calendar
20 0.00139081 http://www1.hollins.edu/faculty/clarkjm/Math152/math152.htm
21 0.00136820 http://www1.hollins.edu/Docs/alumdev/Default.htm
22 0.00136586 http://www1.hollins.edu/faculty/clarkjm/Math152/mth152schedulespring03.htm
23 0.00135915 http://www.hollins.edu/alumnae/alumnae.htm
24 0.00135536 http://www1.hollins.edu/Docs/AlumDev/Default.htm
25 0.00130541 http://www1.hollins.edu/classes/anth250/anth_250.htm

35

Appendix C: Graphs Comparing Number of Iterations for Varying  Values

36

37

Appendix D: Table of Iterates for PageRank Computation of 6-node Example Web

Convergence tolerance 10e-8
=.85

Iteration PageRank
1 [.1666667 .1666667 .1666667 .1666667 .1666667 .1666667]
2 [.1194444 .1194444 .1194444 .4027778 .1902778 .0486111]
3 [.1027199 .1027199 .1027199 .2455671 .3943171 .0519560]
4 [.1245176 .1245176 .1245176 .2559921 .2895937 .0808616]
5 [.1189457 .1189457 .1189457 .293518 .2836190 .0660258]
6 [.1157313 .1157313 .1157313 .2729571 .3146697 .0651794]
7 [.1187640 .1187640 .1187640 .2725381 .3015917 .0695782]
8 [.1182002 .1182002 .1182002 .2782911 .2993829 .0677255]
9 [.1176477 .1176477 .1176477 .2756845 .3039600 .0674126]
10 [.1180613 .1180613 .1180613 .2753624 .3023928 .0680610]
11 [.1180150 .1180150 .1180150 .2762189 .3018971 .0678390]
12 [.1179251 .1179251 .1179251 .2759010 .3025548 .0677687]
14 [.1179784 .1179784 .1179784 .2759441 .3022838 .0678369]
13 [.1179801 .1179801 .1179801 .2758199 .3023778 .0678619]
15 [.1179644 .1179644 .1179644 .2759073 .3023761 .0678235]
16 [.1179715 .1179715 .1179715 .2758912 .3023578 .0678366]
17 [.1179719 .1179719 .1179719 .2759088 .3023415 .0678340]
18 [.1179698 .1179698 .1179698 .2759048 .3023542 .0678317]
19 [.1179707 .1179707 .1179707 .2759019 .3023526 .0678335]
20 [.1179708 .1179708 .1179708 .2759044 .3023499 .0678333]
21 [.1179705 .1179705 .1179705 .2759040 .3023516 .0678329]
22 [.1179706 .1179706 .1179706 .2759035 .3023515 .0678331]
23 [.1179706 .1179706 .1179706 .2759038 .3023511 .0678331]
24 [.1179706 .1179706 .1179706 .2759038 .3023513 .0678331]

38

Appendix E: Comparison of Computation Time and Number of Iterations for PageRank
and Adaptive PageRank for Webs of Varying Sizes

For both methods:
=.85
final tolerance = 10e-8

For the Adaptive PageRank method:
8 iterations per phase
3 phases per restart
4 threshold levels

PageRank
Adaptive

PageRank

dataset n iterations time iterations time
Adaptive PageRank to PageRank

time ratio

linktiny10 10 31 0.01 55 0.02 2

linktiny20 20 99 0.04 100 0.14 3.5

linkmovies 451 16 0.02 31 0.06 3

linkjordan 1885 79 0.07 99 0.21 3

linkjava 2810 84 0.08 99 0.25 3.13

mathworks 517 42 0.05 80 0.22 4.4

hollins 6012 84 0.11 97 0.32 2.91

stanford 281903 91 11.64 99 10.67 0.92

stanberk 685230 92 17.25 99 15.36 0.89

39

Appendix F: Matrix Graph of hollins.edu Web Structure

Each dot represents a nonzero in the adjacency matrix.

40

Appendix G: Graph Comparing Convergence Plots of Power and Adaptive Methods on
the hollins.edu Web with =.85

41

15 References

[1]Arvid Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram

Raghavan. Searching the Web. ACM Transactions on Internet Technology, 2001.

[2]Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web

search engine. Computer Networks and ISDN Systems, 1998.

[3]Sepandar Kamvar, Taher Haveliwala, and Gene Golub. Adaptive Methods for the

Computation of PageRank. Technical Report, Computer Science Department,

Stanford University, 2003.

[4]Amy N. Langville and Carl D. Meyer. Deeper Inside PageRank. Internet Mathematics,

February 2004.

[5]Amy N. Langville and Carl D. Meyer. A Survey of Eigenvector Methods of Web

Information Retrieval. The SIAM Review, December 2003.

[6]David C. Lay. Linear Algebra and Its Applications. Addison-Wesley, 2000.

[7]Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank

Citation Ranking: Bringing Order to the Web. Technical Report, Computer Science

Department, Stanford University, 1998.

[8]Prentice Hall. http://www.prenhall.com/divisions/esm/app/ph-

linear/leon/html/perron.html, 1998.

42

